
Gotta Catch ’em All: Aggregating CVSS Scores
Ángel Longueira-Romero

Industrial Cybersecurity
Ikerlan Technology Research Centre (BRTA)

Arrasate/Mondragón, Spain
alongueira@ikerlan.es

Jose Luis Flores
Industrial Cybersecurity

Ikerlan Technology Research Centre (BRTA)
Arrasate/Mondragón, Spain

jlflores@ikerlan.es

Rosa Iglesias
Industrial Cybersecurity

Ikerlan Technology Research Centre (BRTA)
Arrasate/Mondragón, Spain

riglesias@ikerlan.es

Iñaki Garitano
Dept. of Electronics and Computing

Mondragon Unibertsitatea
Arrasate/Mondragón, Spain
igaritano@mondragon.edu

Abstract—Security metrics are not standardized, but inter-
national proposals such as the Common Vulnerability Scoring
System (CVSS) for quantifying the severity of known vulnerabil-
ities are widely used. Many CVSS aggregation mechanisms have
been proposed in the literature. Nevertheless, factors related to
the context of the System Under Test (SUT) are not taken into
account in the aggregation process; vulnerabilities that in theory
affect the SUT, but are not exploitable in reality. We propose a
CVSS aggregation algorithm that integrates information about
the functionality disruption of the SUT, exploitation difficulty,
existence of exploits, and the context where the SUT operates.
The aggregation algorithm was applied to OpenPLC V3, showing
that it is capable of filtering out vulnerabilities that cannot be
exploited in the real conditions of deployment of the particular
system. Finally, because of the nature of the proposed algorithm,
the result can be interpreted in the same way as a normal CVSS.

Index Terms—CVSS, security metrics, aggregation, attack
graphs, vulnerabilities.

I. INTRODUCTION

System security quantification is not an easy task [1]. There
exist both a lack of consensus and standardization around
security metrics [2], [3], [4], [5], [6], [7], [8]. For this reason,
research efforts keep aiming to unify this field [9].

Among these efforts, the Common Vulnerability Scoring
System (CVSS) is a widely extended standard for vulnerability
quantification [10]. CVSS is a public framework that provides
a standardized method for assigning quantitative values to
security vulnerabilities according to their severity. A CVSS
score is a decimal number in the range [0, 10]1 [11].

The CVSS is aimed to quantify the severity of vulnerabil-
ities in individual and specific software items, however the
majority of systems are actually a composition of simpler
isolated items with different interdependencies. This situation
highlights one of the biggest problems related to security
quantification [12], the difficulty to really measure the global
security state of a composite system. To do so, it would be

1The latest version at the time this paper was written is version 3.1.

necessary to aggregate each individual CVSS value into a
global one in a consistent and coherent way.

The official CVSS documentation does not propose any
kind of aggregation mechanism, and nowadays, there is no
standardized method [13]. In addition to this, previous research
works do not usually integrate contextual or interdependency
information about the vulnerabilities to update the CVSS. This
means that aspects such as whether affected functionalities,
the environment of deployment, or the existence of exploits
are usually neglected.

Context is a critical aspect to integrate in the aggregation
process. This can be illustrated using a device implementing
multiple functionalities as an example. To perform those
functionalities, usually it will contain assets that implement
those functionalities. But depending on the context where
the device is deployed, some of its functionalities might not
be needed. So the assets implementing unused functionalities
would be disabled, and therefore, their vulnerabilities could
not be exploited. It can also be the case that the asset
implementing a functionality is simply inaccessible, so it could
not also be exploited.

This research proposes a novel aggregation algorithm for a
set of CVSS values2. This approach is based on the Extended
Dependency Graphs (EDGs) proposed by Longueira-Romero
et al. [14]. Because EDGs are capable of modeling dependen-
cies, this algorithm can also be applied to computer networks.
Our proposal is capable of selecting the most relevant CVSS
to be aggregated, taking into account four different context-
related properties of the System Under Test (SUT):

1) Functionality disruption.
2) Exploitation difficulty.
3) Existence of exploits, and their development state.
4) Context of deployment.
This approach increases the granularity of the CVSS base,

environment and temporal metrics, where not every possible

2The Python code implementing the aggregation algorithm is available at
GitHub https://github.com/aaalongueira/CVSS Aggregation.

XVII RECSI 2022, Santander 144

Daniel
Línea



value in the scale [0, 10] is achievable, or the result of
changing the value of a submetric has almost no effect on
the final CVSS [13], [15]. Moreover, our proposal is capable
of detecting which branch in the EDG is contributing the most
(more critical) to the final score.

This paper is organized as follows: We review existing
aggregation methods in Section II. Our proposal is explained
in Section III, and tested in a use case in Section IV. Finally,
Section V contains the conclusions and future work of this
research.

II. RELATED WORK

Nowadays, there is no widely-accepted method to aggregate
CVSS values for software composition. All of them can be
classified into one of the following categories [16], [17]: (1)
Arithmetic Aggregation, (2) Attack Graph-based Aggregation,
and (3) Bayesian Network-based Aggregation.

A. Arithmetic Aggregation

This method uses arithmetic operations to aggregate the val-
ues [18], [19], [20], [21]. Common examples of this approach
are taking the maximum of the CVSS values, their arithmetic
mean, or a combination of them. For example, Heyman et
al. [18], proposed an algorithm to aggregate CVSS values in
dependency graph that is based on taking the maximum value
in each case, according to certain conditions.

Although their simplicity makes them suitable for initial
approximations, their results can be biased in two ways:

1) Exploitable by quantity: When a system poses several
vulnerabilities that by their own are not critical and can-
not be exploited, they can sum up to an aggregated value
of a high impact vulnerability (overfitting). This can
happen when multiple simple mechanisms are combined
as the aggregation algorithm.

2) Exploitable by criticality: When there exist a critical
vulnerability, the whole system will be usually classified
as critical. Nevertheless, that vulnerability might not
be exploitable, nor being affecting the functionality of
the system. This is specially common when using the
maximum as the aggregation algorithm.

B. Attack Graph-based Aggregation

This approach models the relationships between vulner-
abilities using attack graphs, converting CVSS scores into
probabilities [22], [23], [24], [25], [26], [27]. In this way, both
the CVSS value and the place of the vulnerability in the whole
graph are taken into account.

Cheng et al. in [16] proposed a graph-based aggregation
method that uses the underlying metrics of CVSS, where the
dependency relationships between vulnerabilities are usually
visible. As the center of the aggregation algorithm, they use
the product of the CVSS used as probabilities, also known as
the join probability of both vulnerability.

The main drawback with these approaches is that the rela-
tionship between individual vulnerabilities cannot be obtained
straightforwardly from existing databases. This means that

establishing a relation between two vulnerabilities implies
that they can be chained during an attack, which is not
always obvious. Moreover, factors such as exploitability of the
vulnerabilities, or existing exploits are not taken into account.

C. Bayesian Network-based Aggregation

Going a step further, these methods integrate the conditional
relationship between vulnerabilities, modeling them using
Bayesian networks [28], [29], [30]. Poolsappasit et al. [29]
proposed a CVSS aggregation framework using Bayesian
networks. They used the Bayesian probability factorization
formula as the aggregation mechanism:

p(x) =
∏
i=0

p(xv|xpa(v))

Bayesian network-based approaches have to deal with estab-
lishing the relationships between the vulnerabilities, but also
with the calculation of conditional probabilities, that have to be
usually estimated. As the previous ones, these techniques do
not integrate information about how functionality if affected
by existing vulnerabilities, or the possibility to actually exploit
them.

III. PROPOSED APPROACH FOR METRIC AGGREGATION

In this paper, we propose a CVSS aggregation algorithm
inspired by the risk propagation formula [31] described in
MAGERIT [32], [33]. First, we describe the corrections factors
involved in our proposal. Then, the aggregation formula is
introduced. Finally, the algorithm and the interpretation of the
results is explained in detail.

A. Correction Factors

The proposed aggregation algorithm integrates correction
factors to adapt the formula described in MAGERIT. These
correction factors apply individually for each CVSS, except
for the average and summarized factors. Correction factors
are summarized in Table I.

1) Functionality factor (ρ): This correction factor repre-
sents whether any functionality of the systems is affected
by its vulnerabilities. It is represented by a binary value,
being 0 when no functionality is affected, and 1 when
any of them is affected. For example, a cryptographic
library with a vulnerability in SHA1. If the SUT does
not make use of SHA1 in any way, the vulnerability
would not be exploitable, and could be removed from
the analysis (ρ = 0).

2) Deepness Factor (β): This factor represents the difficulty
of chained exploitation of each vulnerability. It is repre-
sented by a value between [0, 1] inversely proportional to
the amount of assets to compromise in order to exploit
vulnerability. Vulnerabilities close to the entry point will
account more for the final aggregation, whereas those
that are far away will account less. In this approach,
linear interpolation is proposed to calculate the weight
of each layer, because of its simplicity. Nevertheless,
different interpolations could be used according to the

XVII RECSI 2022, Santander 145

www.editorial.unican.es

Daniel
Línea



TABLE I: Correction factors proposed for adapting the Bayesian sum proposed in MAGERIT.

CORRECTION FACTOR DESCRIPTION AUTOMAtED
Functionality factor (ρ) Binary value indicating whether a vulnerability affects or not the functionality of the SUT. ■
Deepness factor (β) Value between [0, 1] proportional to the position of the affected asset in the EDG of the SUT. ■
Context factor (γ) Binary value indicating vulnerability exploitability in the real and particular conditions of the SUT. □
Exploit factor (µ) Existence of a public exploit, proportional to its state of development: Not defined (µ = 0.5), Theoretical

(µ = 1.25), Proof-Of-Concept (µ = 1.5), Functional (µ = 1.75), and Automated (µ = 2).
■

Summarized factor (λ) This factor summarizes the effect of all the above ones, λ = ρβγµσ. ■
Average factor (σ) Function that adjust the value of the sum to avoid its rapid evolution to 10. ■

criticality of the system. Fig. 1 shows the corresponding
β for a four-layer system.

A

a1

a2

a3

a4

β = 1

β = 0.75

β = 0.5

β = 0.25

Fig. 1: Calculation of the deepness factor for a four-layer of
dependency example.

3) Context factor (γ): This factor considers whether the
exploitation of a vulnerability is actually possible in
the real scenario where the system is deployed. It is
represented by a binary value, where 0 indicated that it
is not possible, and 1, that it is possible. It is calculated
comparing the attack vector of the CVSS with the real
conditions where the device is deployed. For example,
this can happen when a vulnerability with a high CVSS
score needs physical access to be exploited, but in
reality the device is physically isolated. To reflect this,
the CVSS should be updated, lowering the resulting
value [16]. This factor aims to complement the existing
submetrics in the temporal and the environment metrics
of the CVSS. Both the temporal and the environmental
scores lack of an ”isolated” value for the attack vector.

4) Exploit factor (µ): This factor accounts for the existence
of a public exploit for a given vulnerability, being
proportional to its state of development. The temporal
score of the CVSS already implements this feature,
but the CVSS values are not updated in practice [15].
Moreover, taking into account the temporal score has
almost no effect as opposed to using the raw initial
base score. This means that a CVSS just considering
the base score is higher than a CVSS considering an
exploit code maturity of “functional exploit exists”. To
solve this issue, we introduce the following values for
the exploit factor: Not defined (µ = 0.5), Theoretical
(µ = 1.25), Proof-Of-Concept (µ = 1.5), Functional
(µ = 1.75), and Automated (µ = 2). These values are
equivalent to the scale defined in the CVSS Specification
Document [10].

5) Summarized factor (λ): The λ factor accounts for the

effect of all the factors above:

λ = ρβγµ (1)

6) Average factor (σ): This factor defines the behavior of
the aggregation function. It can be chosen as needed
(e.g., the arithmetic or harmonic mean), but taking into
account all the values to be added.

B. Aggregation Formula

The aggregation function is defined as:

Γ(
−→
V ) = 10− 1

σ
f(
−→
V ) (2)

Where
−→
V is a vector (cvss0, cvss1, . . . , cvssn) with all the

corrected CVSS values to be added, cvss, being n the last
value to be added. f(

−→
V ) = an is defined as the following

recursive function:

(3)an = 10

[
1−

(
1−

λan−1

10
an−1

)
·
(
1− λcvssn

10
cvssn

)]
Where the base case is defined as:

a0 = λcvss0cvss0 (4)

C. Algorithm

The proposed aggregation algorithm is divided into the
following steps (see Fig. 2):

1) Calculation of the correction factors for each CVSS,
2) Calculation of the summarized factor for each CVSS,
3) Calculation of the corrected CVSS values,
4) Calculation of the average correction function, and
5) Aggregation.
Notice that the dependency graph of the SUT, the vulner-

abilities associated to each element of the dependency graph,
and their CVSS value are needed.

1) Correction factors for each CVSS: The first step obtains
the values of each correction factor for each CVSS:

1) Functionality factor (ρ): This factor is obtained using
the description provided in the corresponding CVE of
each CVSS. The description provides enough informa-
tion to decide whether the functionality of the system is
affected.

2) Context factor (γ): This factor is obtained by compar-
ing the value of the Attack Vector (AV) submetric of the
CVSS, with the real environment of deployment of the
SUT.

XVII RECSI 2022, Santander 146

Daniel
Línea



START

END

OBTAIN THE DEPENDENCY GRAPH

OBTAIN FUNCTIONALITY FACTOR USING THE
DESCRIPTION OF THE CVE

OBTAIN THE CONTEXT FACTOR COMPARING
THE ATTACK VECTOR OF THE CVSS WITH THE

ENVIRONMENT OF DEPLOYMENT

AGGREGATION

COMPUTE THE LEVEL OF THE CVE IN THE
DEPENDENCY GRAPH

COMPUTE THE VALUE OF THE CORRECTION
FUNCTION USING ALL THE CVSS VALUES

COMPUTE THE SUMMARIZED FACTOR

C
O

R
R

E
C

T
IO

N
 F

A
C

TO
R

S
AV

E
R

A
G

IN
G

FU
N

C
T

IO
N

 
D

E
C

O
M

PO
SI

T
IO

N

OBTAIN THE EXPLOIT FACTOR SEARCHING FOR
THE EXISTENCE OF EXPLOITS FOR THE CVE

OBTAIN THE DEEPNESS FACTOR ACORDING TO
THE LEVEL IN THE DEPENDENCY GRAPH

SELECT THE INTERPOLATION FUNCTION

SELECT THE CORRECTION FUNCTION

Fig. 2: Flowchart showing the main steps of the aggregation
algorithm for each CVSS.

3) Exploit factor (µ): To obtain this factor, public
databases have to be queried to find any potential exploit
for each vulnerability.

4) Deepness factor (β): For any given CVSS, its value is
obtained according to the deepness in the exploit chain
for the SUT [14].

2) Summarized factor for each CVSS: The summarized
factor, λ, is obtained by multiplying all the corrections factors
obtained in the previous step, following Equation 1.

3) Corrected CVSS values: The corrected CVSS values
are obtained by multiplying each CVSS by its corresponding
summarized factor, λ. At this point, it is necessary to check for
overflows, because the exploitation factor generated corrected
CVSS values higher than 10. Values higher than 10 are set to
10 at this stage.

4) Correction function: At this point, it is necessary to
choose an averaging function. Choosing one function over the
other will cause the aggregation result to grow slower or faster
toward 10 in each addition. In this case, and for the sake of
clarity, we chose the arithmetic mean, but any other kind of
mean (e.g., harmonic mean) could be used according to each
scenario.

5) Aggregation: Finally, the aggregated value is computed
using Equation 2.

D. Interpretation of the result

The advantage of this method is that the result can be
interpreted in the same way that a normal CVSS would

be interpreted. This is because of the correction factors in
Equation 2, that only let the algorithm return high values
when vulnerabilities with high CVSS values are exploitable in
reality (λ is close to 1). This mechanism ensures that multiple
aggregated low CVSS values do not result in a critical score
just because there are a large number of them.

IV. USE CASE

To test the potential of our proposal, we analyzed Version 3
of OpenPLC project, obtaining a CVSS aggregated value for
its vulnerabilities using the proposed algorithm.

OpenPLC is the first functional open source Programmable
Logic Controller (PLC), both in software and hardware [34]. It
was mainly created for research purposes, because it provides
its entire source code [35], [36]. The current version of the
project is OpenPLC V3 [37].

A. Use Case Scenario

For this use case, we are going to make the next assump-
tions:

• The system executing OpenPLC V3 is deployed in an
isolated network.

• The system running OpenPLC V3 is physically isolated.
• The attacker is an insider without access to the systems.
• The reference point for the deepness factor will be the
webserver.py in Fig. 3.

B. Structure of OpenPLC

The first step was to obtain the inner structure of OpenPLC
V3 using the Extended Dependency Graph (EDG) proposed
in [14]. To simplify the obtained graph, we only represented
the shortest path to each node, so the worst case scenario
(more accessible from the outside) is considered. The result is
shown in Fig. 3.

C. Calculation of the Correcting Factors

OpenPLC V3 has five vulnerabilities: two vulnerabilities af-
fecting libgcc_s, and three vulnerabilities affecting libc.
Table II shows each vulnerability in more detail.

From these data, it is possible to obtain all corrections
factors for each vulnerability, as follows (Table II summarizes
the results):

1) Functionality Factor (ρ)r: This factor is obtained from
the analysis of the description of each CVE. From these data,
we have to decide whether the functionality of OpenPLC V3
is affected (“1”) or not (“0”).

2) Deepness Factor (β)b: By taking a look at Fig. 3,
it can be seen that the maximum deepness level is four.
So the possible values for the deepness factor are the ones
shown in Fig. 1. More precisely, vulnerabilities CVE-2019-
15847 and CVE-2018-12886 have a deepness factor of 0.25,
because they are at level four. By contrast, vulnerabilities
CVE-2017-18269, CVE-2018-11236, and CVE-2018-11237
have a deepness factor of 0.5, because they are at level three.

XVII RECSI 2022, Santander 147

www.editorial.unican.es

Daniel
Línea



CVE-2018-12886
CVSS: 8.1

openplc 
(service)

OpenPLC

Open
DNP3

ST
Optimizer

Glue
Generator LibModbus

Matiec
Compiler 

(iec2c)

python2.7

libgcc_s

libpthread libdl libutil libzlibmlibc

libopenpal

CVE-2019-15847
CVSS: 7.5

CVE-2018-11237
CVSS: 7.8

CVE-2018-11236
CVSS: 9.8

CVE-2017-18269
CVSS: 9.8libopenpal libstdc++

webserver.py

Fig. 3: Extended Dependency Graph of OpenPLC V3. Circles represent individual assets, black triangles are the vulnerabilities
associated to each asset, and the square represent the entry point to the system, or root node of dependency.

TABLE II: Vulnerabilities present in OpenPLC V3. For each one, the CVSS is shown, together with their associated Attack
Vector (AV), and their correction factors.

CVE CVSS Attack Vector Functionality (ρ) Deepness (β) Context (γ) Exploit (µ) Summarized (λ) Corrected CVSS
CVE-2017-18269 9.8 Network 1 0.5 1 1.25 0.625 6.125
CVE-2018-11236 9.8 Network 0 0.5 1 0 0 0
CVE-2018-11237 7.8 Local 1 0.5 0 1.25 0 0
CVE-2018-12886 8.1 Network 1 0.25 1 1.25 0.313 2.530
CVE-2019-15847 7.5 Network 1 0.25 1 1.25 0.313 2.344

3) Context Factor (γ)g: From the initial assumptions, in-
siders can only exploit the existing vulnerabilities from the
local network. This means that every vulnerability that has an
attack vector of “network” (N) can be exploited, thus CVE-
2017-18269, CVE-2018-11236, CVE-2018-12886, and CVE-
2019-15847 are exploitable by the attacker. Vulnerabilities
whose attack vector is “local” (L) cannot be exploited, because
physical access is needed. Therefore, CVE-2018-11237 cannot
be exploited.

4) Exploit Factor (µ)m: Public databases have to be
queried to find existing exploits for each vulnerability. Accord-
ing to their state of development, a different value is assigned.

5) Summarized Factor (λ)l: The summarized factor for
each vulnerability is obtained as the product of the previous
factors, as shown in Equation 1. At this step, by taking a
look at the resulting values of λ, it is possible to know which
CVSS will contribute to the final aggregation and in which
percentage (λ > 0), and which ones will not contribute at all
(λ = 0).

6) Average Factor (σ)s: Finally, we obtained the average
factor by calculating the arithmetic mean of all the initial
CVSS values: σ = 8.6.

D. Aggregation

The previous step before the aggregation is obtaining the
corrected CVSS value for each initial CVSS. This is done by
multiplying each CVSS by their corresponding summarized
value (λ). The corrected values are shown in Table II.

Finally, the aggregation is performed using the corrected
CVSS values. The aggregation is an iterative process that
takes the first two values to be added, and adds them using
Equation 2. Then, this result is added to the third value to be
added, and so on, until there are no more values.

For OpenPLC V3, this process returns a final aggregated
value of 9.1. Without the correction factors, the result would
be 10. Nevertheless, taking into account features such as the
exploitability of the vulnerabilities, the context of the SUT,
or its functionalities, we can select the most important CVSS
values to be aggregated. With such process, the total amount
of CVSS values to be added is simplified. This also helps to
simplify potential attack paths.

This result was obtained aggregating three of the five CVSS
values present in OpenPLC V3. The associated CVSS for
CVE-2018-11236 and CVE-2018-11237 were not taking into
account for the aggregation, because they do not affect to
any functionality of the system, Moreover, CVE-2018-11237
cannot be exploited in the conditions described in the use case.

CVE-2017-18269 (with an associated CVSS of 9.8) is the
vulnerability with the highest value for λ. Therefore, it is going
to contribute the most to the final aggregated value. CVE-
2018-12886 and CVE-2019-15847 follow with a CVSS of 8.1
and 7.5 respectively. As it is shown, the selected vulnerabilities
have a high CVSS, so it is expected that the aggregated value
would be also high. This is reflected in the obtained result of
9.1.

Finally, it is worth highlighting that the final result is lower

XVII RECSI 2022, Santander 148

Daniel
Línea



than the highest CVSS value present in OpenPLC V3. This
difference is due to the effect of the correction factors: as the
CVE-2017-18269 is further away from the entry point of the
system (in layer 3), its real CVSS value in lower.

V. CONCLUSIONS AND FUTURE WORK

In this research work, we proposed a new aggregation
algorithm for CVSS values. The proposed approach integrates
correction factors to select the most relevant CVSS values to
be added based on contextual information. For each vulnera-
bility, we check for:

1) Functionality disruption.
2) Exploitation difficulty.
3) Existence of exploits, and their development state.
4) Context of deployment.
We assigned a different correction factor to each one of the

previous properties to further ponder the initial CVSS value
and adjust it to the real context where the system is operating.

The proposed aggregation algorithm was applied to Open-
PLC V3 in a use case. Two of the existing vulnerabilities
were filtered out by the algorithm, as they cannot be exploited
in the described context of OpenPLC V3. The rest of the
vulnerabilities were aggregated, and the result (9.1) was indeed
lower than the highest CVSS present in the system (9.8).
This shows that the CVSS for each vulnerability was correctly
adjusted to the real context of deployment of OpenPLC V3.

As future work, we plan to perform the aggregation at the
submetric level of the CVSS, instead of using the base metric
value, giving more granular values for each factor.

ACKNOWLEDGEMENTS

Iñaki Garitano is a member of the Intelligent Systems for In-
dustrial Systems research group at Mondragon Unibertsitatea
(IT1676-22), supported by the Department of Education, Uni-
versities and Research of the Basque Government. This work
was partially supported by the Ayudas Cervera para Centros
Tecnológicos grant of the Spanish Center for the Development
of Industrial Technology (CDTI) under the project EGIDA
(CER-20191012), and by the Basque Country Government
under the ELKARTEK program, project REMEDY - Real
Time Control And Embedded Security (KK-2021/00091).

REFERENCES

[1] S. Pfleeger and R. Cunningham, “Why measuring security is hard,” IEEE
Security Privacy, July 2010.

[2] S. M. Bellovin, “On the brittleness of software and the infeasibility of
security metrics,” IEEE Security & Privacy, vol. 4, no. 4, pp. 96–96,
2006.

[3] A. Atzeni and A. Lioy, “Why to adopt a security metric? a brief survey,”
Advances in Information Security, vol. 23, pp. 1 – 12, 2006.

[4] V. Verendel, “Quantified security is a weak hypothesis: A critical survey
of results and assumptions,” in Proceedings of the 2009 Workshop on
New Security Paradigms Workshop, NSPW ’09, (New York, NY, USA),
pp. 37–50, ACM, 2009.

[5] S. Stolfo, S. M. Bellovin, and D. Evans, “Measuring security,” IEEE
Security Privacy, May 2011.

[6] W. H. Sanders, “Quantitative security metrics: Unattainable holy grail or
a vital breakthrough within our reach?,” IEEE Security Privacy, vol. 12,
no. 2, pp. 67–69, 2014.

[7] M. Rudolph and R. Schwarz, “A critical survey of security indicator
approaches,” in 2012 Seventh International Conference on Availability,
Reliability and Security, pp. 291–300, Aug 2012.

[8] S. Sentilles, E. Papatheocharous, and F. Ciccozzi, “What do we know
about software security evaluation? a preliminary study,” in QuA-
SoQ@APSEC, 2018.

[9] D. G. Ángel Longueira-Romero, Rosa Iglesias and I. Garitano, “How
to Quantify the Security Level of Embedded Systems? A Taxonomy of
Security Metrics,” in Proceedings of the 2020 18th IEEE International
Conference on Industrial Informatics (INDIN), 2020.

[10] FIRST - global Forum of Incident Response and Security Teams,
“Common Vulnerability Scoring System (CVSS).” https://www.first.org/
cvss/v3-1/, 2021-02-03.

[11] National Institute for Standards and Technology (NIST), “National
Vulnerability Database NVD — Vulnerabilities.” https://nvd.nist.gov/
vuln/search, 2021-02-03.

[12] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” vol. 49, dec 2016.

[13] H. Howland, “Cvss: Ubiquitous and broken,” Digital Threats, sep 2021.
[14] A. Longueira-Romero, R. Iglesias, J. L. Flores, and I. Garitano, “A novel

model for vulnerability analysis through enhanced directed graphs and
quantitative metrics,” Sensors, vol. 22, no. 6, 2022.

[15] J. Spring, E. Hatleback, A. Householder, A. Manion, and D. Shick,
“Time to change the cvss?,” IEEE Security & Privacy, vol. 19, no. 2,
pp. 74–78, 2021.

[16] P. Cheng, L. Wang, S. Jajodia, and A. Singhal, “Aggregating cvss base
scores for semantics-rich network security metrics,” in 2012 IEEE 31st
Symposium on Reliable Distributed Systems, pp. 31–40, 2012.

[17] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer, “Dag-based attack
and defense modeling: Don’t miss the forest for the attack trees,”
Computer Science Review, vol. 13-14, pp. 1–38, 2014.

[18] T. Heyman, R. Scandariato, C. Huygens, and W. Joosen, “Using security
patterns to combine security metrics,” in 2008 Third International
Conference on Availability, Reliability and Security, pp. 1156–1163,
2008.

[19] Z. Song, Y. Wang, P. Zong, Z. Ren, and D. Qi, “An empirical study
of comparison of code metric aggregation methods–on embedded soft-
ware,” in 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pp. 114–119, 2019.

[20] M. Walkowski, M. Krakowiak, M. Jaroszewski, J. Oko, and S. Sujecki,
“Automatic cvss-based vulnerability prioritization and response with
context information,” in 2021 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), pp. 1–6, 2021.

[21] C. Fruhwirth and T. Mannisto, “Improving cvss-based vulnerability
prioritization and response with context information,” in 2009 3rd
International Symposium on Empirical Software Engineering and Mea-
surement, pp. 535–544, 2009.

[22] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack graph-
based probabilistic security metric,” in Data and Applications Security
XXII (V. Atluri, ed.), (Berlin, Heidelberg), pp. 283–296, Springer Berlin
Heidelberg, 2008.

[23] S. Zhang, X. Ou, A. Singhal, and J. Homer, “An empirical study of
a vulnerability metric aggregation method,” in Mission Assurance and
Critical Infrastructure Protection, 2011 World Congress in Computer
Science, 2011-08-18 00:08:00 2011.

[24] N. Idika and B. Bhargava, “Extending attack graph-based security
metrics and aggregating their application,” IEEE Transactions on De-
pendable and Secure Computing, vol. 9, no. 1, pp. 75–85, 2012.

[25] M. Zhang, L. Wang, S. Jajodia, and A. Singhal, “Network attack surface:
Lifting the concept of attack surface to the network level for evaluating
networks’ resilience against zero-day attacks,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 1, pp. 310–324, 2021.

[26] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. R. Rajagopalan, and
A. Singhal, “Aggregating vulnerability metrics in enterprise networks
using attack graphs,” Journal of Computer Security, vol. 21, no. 4,
pp. 561–597, 2013.

[27] L. Gallon and J.-J. Bascou, “Cvss attack graphs,” in 2011 Seventh
International Conference on Signal Image Technology Internet-Based
Systems, pp. 24–31, 2011.

[28] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring network
security using dynamic bayesian network,” in Proceedings of the 4th
ACM Workshop on Quality of Protection, QoP ’08, (New York, NY,
USA), p. 23–30, Association for Computing Machinery, 2008.

XVII RECSI 2022, Santander 149

www.editorial.unican.es

Daniel
Línea



[29] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk manage-
ment using bayesian attack graphs,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, no. 1, pp. 61–74, 2012.

[30] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy, “Using bayesian networks
for cyber security analysis,” in 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pp. 211–220, 2010.

[31] M. A. Amutio, J. Candau, and J. A. Mañas, “MAGERIT V3.0. Method-
ology for Information Systems Risk Analysis and Management. Book III
- Technical Guide,” National Standard, Ministry of Finance and Public
Administration, Madrid, Spain, 2012.

[32] M. A. Amutio, J. Candau, and J. A. Mañas, “MAGERIT V3.0. Method-
ology for Information Systems Risk Analysis and Management. Book
I - The Method,” National Standard, Ministry of Finance and Public
Administration, Madrid, Spain, 2014.

[33] A. Syalim, Y. Hori, and K. Sakurai, “Comparison of risk analysis meth-
ods: Mehari, magerit, nist800-30 and microsoft’s security management
guide,” in 2009 International Conference on Availability, Reliability and
Security, pp. 726–731, 2009.

[34] Thiago Alves, “OpenPLC Project.” https://www.openplcproject.com/.
[35] T. R. Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues, “Openplc:

An open source alternative to automation,” in IEEE Global Humanitar-
ian Technology Conference (GHTC 2014), pp. 585–589, 2014.

[36] T. Alves and T. Morris, “Openplc: An iec 61,131–3 compliant open
source industrial controller for cyber security research,” Computers &
Security, vol. 78, pp. 364–379, 2018.

[37] Thiago Alves, “OpenPLC V3.” https://github.com/thiagoralves/
OpenPLC v3, 2021-05-15.

XVII RECSI 2022, Santander 150

Daniel
Línea


