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Abstract: The rapid evolution of industrial components, the paradigm of Industry 4.0, and the
new connectivity features introduced by 5G technology all increase the likelihood of cybersecurity
incidents. Such incidents are caused by the vulnerabilities present in these components. Designing
a secure system is critical, but it is also complex, costly, and an extra factor to manage during the
lifespan of the component. This paper presents a model to analyze the known vulnerabilities of
industrial components over time. The proposed Extended Dependency Graph (EDG) model is based
on two main elements: a directed graph representation of the internal structure of the component, and
a set of quantitative metrics based on the Common Vulnerability Scoring System (CVSS). The EDG
model can be applied throughout the entire lifespan of a device to track vulnerabilities, identify new
requirements, root causes, and test cases. It also helps prioritize patching activities. The model was
validated by application to the OpenPLC project. The results reveal that most of the vulnerabilities
associated with OpenPLC were related to memory buffer operations and were concentrated in the
libssl library. The model was able to determine new requirements and generate test cases from
the analysis.

Keywords: CPE; CVE; CVSS; CWE; CAPEC; directed graph; IACS; cybersecurity; vulnerability
assessment; security metrics; IEC 62443; OpenPLC

1. Introduction

Industrial components are the driving force of almost every industrial field, such as
automotive, energy production, and transportation [1–6]. These types of components are
rapidly evolving [7,8] and increasing in number [9]. This increase is related to several
factors: (1) the reuse of open-source hardware and software, (2) new connectivity features,
and (3) more complex systems.

Open-source hardware and software, and Commercial Off-The-Shelf (COTS) compo-
nents are being integrated to speed up their development [10–12]. COTS are easy to use,
but they can introduce vulnerabilities, creating potential entry points for attackers [13,14].

Industrial components are providing more advanced connectivity features, enabling
new automation applications, services, and data exchange. This new connectivity, boosted
by the fifth generation (5G) of wireless technology for cellular networks, will further open
the window of exposure to any threat [6,9,15,16].

The complexity of industrial systems is also increasing with the integration of new
trends, such as the Internet of Things (IoT) [16–19], cloud computing, Artificial Intelligence
(AI) [19,20], and big data. The extensive use of these technologies further opens the
windows for attackers [21–26]. Complexity is a critical aspect of industrial components
design because it is closely related to the number of vulnerabilities [27,28].
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This scenario points to security as a key aspect of industrial components. Moreover,
numerous attacks have been reported targeting industrial enterprises across the globe since
2010 [29]. An exponential rise in such attacks is predicted for future years [30,31].

Although great efforts are being made to develop new and better ways to analyze
vulnerabilities [32,33], to measure them (e.g., Common Vulnerabilities and Exposures
(CVE) [34], Common Vulnerability Scoring System (CVSS) [35–37], or Common Weakness
Enumeration (CWE) [38,39]), or to aggregate them [40], to the best of our knowledge,
existing models do not cover the entire life cycle of industrial components. Performing a
vulnerability analysis at a single point in time (e.g., during development or when a product
has been released) is not enough for industrial components, and their long lifespan has to be
considered [41,42]. Furthermore, both software and hardware should be considered, given
the strong bonding between hardware and software in industrial components [43–46].

In the present paper, we propose an Extended Dependency Graph (EDG) model that
performs continuous vulnerability assessment to determine the source and nature of vul-
nerabilities and enhance security throughout the entire life cycle of industrial components.
The proposed model is built on a directed graph-based structure, and a set of metrics based
on globally accepted security standards.

This paper is structured as follows: First, the related work is reviewed in Section 2.
Then, the main pieces of the proposed model are defined in Section 3. Second, to demon-
strate the potential of this proposal, the proposed model is applied to a real use case in
Section 4. Finally, conclusions and future work of this research are described in Section 5.

2. Related Work

This section will review the current status of vulnerability assessment. This review aims
to find similar approaches from the literature, including the current standard and metrics.

2.1. Vulnerability Analysis in Security Standards

Industry is currently making a significant effort to incorporate security aspects into
the development of industrial components, which has led to a set of standards, such as
the Common Criteria and ISA/IEC 62443. This review is focused on how these standards
conduct vulnerability analysis, the use of metrics, their management of the life cycle of
the device, the techniques that they propose, and the security evaluation of both software
and hardware.

2.1.1. ISA/IEC 62443

ISA/IEC 62443 constitutes a series of standards, technical reports, and related in-
formation that define the procedures and requirements for implementing electronically
secure Industrial Automation and Control Systems (IACSs) [47]. As expressed by this
standard, security risk management shall jointly and collaboratively be addressed by all
the entities involved in the design, development, integration, and maintenance of the
industrial and/or automation solution (including subsystems and components) to achieve
the required security level [48].

This joint effort is reflected in the organization of the documents of the standard, which
is divided into four parts:

1. Part 1—General: Provides background information such as security concepts, termi-
nology, and metrics;

2. Part 2—Policies and procedures: Addresses the security and patch management
policies and procedures;

3. Part 3—System: Provides system development requirements and guidance;
4. Part 4—Component: Provides product development and technical requirements,

which are intended for product vendors.

The ISA/IEC 62443-4-1 technical document is divided into eight practices, which
specify the secure product development life cycle requirements for both the development
and the maintenance phases [49]. The “Practice 5—Security verification and validation
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testing” (SVV) section of this document specifies that a process shall be employed to identify
and characterize potential security vulnerabilities in the product, including known and
unknown vulnerabilities [50,51]. Two requirements in Practice 5 are in charge of the task of
analyzing vulnerabilities, as follows:

• Requirement SVV-3. Vulnerability Testing [49]. This requirement states that a process
shall be employed to perform tests that focus on identifying and characterizing poten-
tial and known security vulnerabilities in the product (i.e., fuzz testing, attack surface
analysis, black box known vulnerability scanning, software composition analysis, and
dynamic runtime resource management testing).

• Requirement SVV-4. Penetration Testing [49]. This requirement states that a pro-
cess shall be employed to identify and characterize security-related issues via tests
that focus on discovering and exploiting security vulnerabilities in the product (i.e.,
penetration testing).

Although the ISA/IEC 62443-4-1 document considers the possibility of analyzing
and characterizing the vulnerabilities of an industrial component, it does not propose
a technique to perform this task but instead refers to other standards for vulnerability
handling processes [52]. In addition, it does not indicate how the data obtained from the
analysis should be interpreted, and it does not define metrics or reference values for the
current state of compliance with the requirement. Finally, it does not take into account
neither the dependencies among the assets of the industrial component (dependency trees)
or their evolution of the number of vulnerabilities over time.

2.1.2. Common Criteria

The Common Criteria (CC) for Information Technology Security Evaluation (ISO/IEC
15408) is an international standard that has a long tradition in computer security certifi-
cation [53]. CC is a framework that provides assurance that the processes of specification,
implementation, and evaluation of a computer security product have been conducted in a
rigorous, standard, and repeatable manner at a level that is commensurate with the target
environment for use.

To describe the rigor and depth of an evaluation, the CC defines seven Evaluation
Assurance Levels (EALs) on an increasing scale [53], from EAL1 (the most basic) to EAL7
(the most stringent security level). It is important to notice that the EAL levels do not mea-
sure security itself. Instead, emphasis is given to functional testing, confirming the overall
security architecture and design, and performing some testing techniques (depending on
the EAL to be achieved).

The CC defines five tasks in the vulnerability assessment class, which manage the
deepness of the vulnerability assessment. The higher the EAL to be achieved, the greater
the number of tasks in the list to be performed [54]:

1. Vulnerability survey,
2. Vulnerability analysis,
3. Focused vulnerability analysis,
4. Methodical vulnerability analysis, and
5. Advanced methodical vulnerability analysis.

Every task checks for the presence of publicly known vulnerabilities. Penetration
testing is also performed. The main difference among the five levels of vulnerability
analysis described here is the deepness of the analysis of known vulnerabilities and the
penetration testing.

The CC scheme defines the general activities, but it does not specify how to perform
them, therefore no technique for analyzing vulnerabilities is proposed. The evaluator
decides the most appropriate techniques for each test in each scenario and for each device,
which adds a large degree of subjectivity to the evaluation. Furthermore, dependencies
among vulnerabilities and assets are not considered in the analysis. Moreover, the CC
does not define a procedure to manage the life cycle of the device. In other words, when
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updated, the whole device has to be reevaluated [55–58]. Finally, although the usage of
metrics is encouraged by the CC, it does not propose any explicitly defined metric to be
used during the evaluation.

2.2. Vulnerability Analysis Methodologies

Vulnerability analysis is a key step towards the security evaluation of a device. Conse-
quently, many research efforts have been focused on solving this issue. In this subsection,
the most relevant works related to vulnerability analysis are reviewed.

Homer et al. [59] present a quantitative model for computer networks that objectively
measures the likelihood of a vulnerability. Attack graphs and individual vulnerability
metrics, such as CVSS and probabilistic reasoning are applied to produce a sound risk
measurement. However, the main drawback is that their work is only applicable to com-
puter networks. Although they propose new metrics based on the CVSS for probabilistic
calculations, they do not integrate standards such as CAPEC to enhance their approach
centered on possible attacks and privilege escalation. They also fail to establish a relation-
ship among existing vulnerabilities, and they fail to obtain the source problem causing
each vulnerability.

Zhang et al. [60,61] developed a quantitative model that can be used to aggregate vul-
nerability metrics in an enterprise network based on attack graphs. Their model measures
the likelihood that breaches can occur within a given network configuration, taking into
consideration the effects of all possible interplays between vulnerabilities. This research
is centered on computer networks, using attack graphs. Although the proposed model
is capable of managing shared dependencies and cycles, only CVSS-related metrics are
used. Moreover, this model assumes that the attacker knows all of the information in the
generated attack graphs. Finally, the method that they proposed for the aggregation of met-
rics is not valid for vulnerability analysis, because the dependency between vulnerabilities
reflected in attacks graphs are is not trivially obtained.

George et al. [30] propose a graph-based model to address the security issues in
Industrial IoT (IIoT) networks. Their model is useful because it represents the relationships
among entities and their vulnerabilities, serving as a security framework for the risk
assessment of the network. Risk mitigation strategies are also proposed. Finally, the
authors discuss a method to identify the strongly connected vulnerabilities. However, the
main drawback of this work is that each node of the generated attack graph represents a
vulnerability instead of representing a device or an asset of that device. This leads to a loss
of information in the analysis because there is no way to know which vulnerability belongs
to which device. Moreover, these methods need to know the relationships among present
vulnerabilities in the devices. This information is not trivially obtained, and a human in the
loop is needed. The proposals of [62,63] follow a similar graph-based approach to study
the effects of cascade failures in the power grid and a subway network.

Poolsappasit et al. [64] propose a risk management framework using Bayesian net-
works that enables a system administrator to quantify the chances of network compromise
at various levels. The authors are able to model attacks on the network, and also to integrate
standardized information of the vulnerabilities involved, such as their CVSS score. Al-
though their proposed model lends itself to dynamic analysis during the deployed phase of
the network, these results can only be applied to computer networks where the relationship
among the existing vulnerabilities is known. Meanwhile, the prior probabilities that are
used in the model are assigned by network administrators, and hence are subjective. The
proposed model also has some issues related to scalability.

Muñoz-González et al. [65] propose the use of efficient algorithms to make an exact
inference in Bayesian attack graphs, which enables static and dynamic network risk assess-
ments. This model is able to compute the likelihood of a vulnerability and can be extended
to include zero-day vulnerabilities, attacker’s capabilities, or dependencies between vul-
nerability types. Although this model is centered on studying possible attacks, it fails to
integrate standards (such as CAPEC) that are related to attack patterns. Moreover, the
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generated graphs are focused on privilege escalation, trust, and users, rather than including
information about vulnerabilities and the analyzed device.

Liu et al. [66] carry out a detailed assessment of vulnerabilities in IoT-based criti-
cal infrastructures from the perspectives of applications, networking, operating systems,
software, firmware, and hardware. They highlight the three key critical infrastructure
IoT-based cyber-physical systems (i.e., smart transportation, smart manufacturing, and
smart grid). They also provide a broad collection of attack examples upon each of the key
applications. Finally, the authors provide a set of best practices and address the necessary
steps to enact countermeasures for any generic IoT-based critical infrastructure system.
Nevertheless, their proposal is focused on attacks and countermeasures, and it leaves aside
the inner analysis of the targets. Continuous evaluation over time is not considered in this
proposal, and no enhancements of the development process are generated. On the other
hand, Pascale et al. [67] proposed the analysis in both spatial and temporal dimensions for
intrusion detection.

Hu et al. [68] propose a network security risk assessment method that is based on the
Improved Hidden Markov Model (I-HMM). The proposed model reflects the security risk
status in a timely and intuitive manner, and it detects the degree of risk that different hosts
pose to the network. Although this is a promising approach, it is centered on computer
networks and is at a higher abstraction level. No countermeasure or enhancement in the
development process is proposed or generated.

Zografopoulos et al. [13] provide a comprehensive overview of the Cyber-Physical
System (CPS) security landscape, with an emphasis on Cyber-Physical Energy Systems
(CPES). Specifically, they demonstrate a threat modeling methodology to accurately repre-
sent the CPS elements, their interdependencies, as well as the possible attack entry points
and system vulnerabilities. They present a CPS framework that is designed to delineate the
hardware, software, and modeling resources that are required to simulate the CPS. They
also construct high-fidelity models that can be used to evaluate the system’s performance
under adverse scenarios. The performance of the system is assessed using scenario-specific
metrics. Meanwhile, risk assessment enables system vulnerability prioritization, while
factoring in the impact on the system’s operation. Although this research work is compre-
hensive, it is focused on enhancing the existing adversary and attack modeling techniques
of CPSs of the energy industry. Moreover, their model does not integrate the internal
structure of the target of evaluation, and it does not take both software and hardware into
account for the evaluation. Continuous evaluation over time is not considered. Finally,
they do not propose countermeasures or any kind of mechanism to enhance the security or
the development of the CPSs.

Most of the works reviewed here are more focused on modeling threats and attacks,
instead of using their results to propose enhancements during other steps in the life cycle
of CPS (e.g., development, and maintenance). It is worth noting that they are still more
focused on software evaluation, while hardware is usually neglected in their proposals.

As shown in this review, most of the research has adopted dependency trees, attack
graphs, or directed graphs as the main tool to manage and assess vulnerabilities in computer
networks. Graphs are an efficient technique to represent the relationships between entities,
and they can also effectively encode the vulnerability relations in the network. Furthermore,
the analysis of the graph can reveal the security-relevant properties of the network. For fixed
infrastructure networks, graphical representations, such as attack graphs, are developed to
represent the possible attack paths by exploiting the vulnerability relationships. For these
reasons, vulnerability analysis techniques based on directed graphs are frequently found in
the literature [69]. However, despite their potential, these analysis techniques have been
relegated to vulnerability analysis in computer networks. Graph-based analysis has rarely
been applied to industrial components.
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2.3. Security Metrics

Standards of measurement and metrics are a powerful tool to manage security and
for making decisions [70–72]. If carefully designed and chosen, metrics can provide a
quantitative, repeatable, and reproducible value. This value is selected to be related
to the property of interest of the systems under test (e.g., number and distribution of
vulnerabilities). The use of metrics enables results to be compared over time, and among
different devices. In addition, they can also be used to systematically improve the security
level of a system or to predict this security level at a future point in time.

Although the capabilities of metrics have been demonstrated, they are not free of
drawbacks. In our previous research work [72], we performed a systematic review of the
literature and standards. To detect possible gaps, our objective was to find which types of
metrics have been proposed and in which fields have been applied. This research work
concludes that, in general, standards encourage the use of metrics, but they do not usually
propose any specific set of metrics. If metrics are proposed, then they are conceived to be
applied at a higher level (i.e., organization level), and then cannot be applied to industrial
components. This type of metric is usually related to measuring the return on security
investment, security budget allocation, and reviewing security-related documentation.

Our previous results also highlight that scientific papers have focused their efforts
on software-related metrics: 77.5% of the analyzed metrics were exclusively applicable
to software (e.g., lines of code, number of functions, and so on), whereas only 0.6% were
related exclusively to hardware (e.g., side-channel vulnerability factor metric). In addition,
14.8% of them could be applied to both software and hardware (e.g., the historically
exploited vulnerability metric that measures the number of vulnerabilities exploited in the
past), and the remaining 7.1% are focused on other aspects, such as user usability. This
shows that there is a clear lack of hardware security metrics in the literature, and the main
contributions are centered on software security.

Other research works also reveal common problems across security metrics [73,74]:

• Hardly any security metric has a solid theoretical foundation or empirical evidence in
support of the claimed correlation.

• Many security metrics lack an adequate description of the scale, unit, and reference
values to compare and interpret the results.

• Only a few implementations or programs were available to test these security metrics
and only one of the analyzed papers performed some kind of benchmarking or
comparison with similar metrics.

• The information provided in the analyzed papers is insufficient to understand whether
the proposed metrics are applicable in a given context, or how to use them.

Under this scenario, it seems reasonable that future research should be focused on the
development of a convincing theoretical foundation, empirical evaluation, and systematic
improvement of existing approaches, in an attempt to solve the lack of widely accepted
solutions. In this research work, metrics constitute a key element. They are developed to
analyze the distribution of vulnerabilities and to track their evolution over time.

3. Proposed Approach

In this research work, we propose an EDG model for the continuous assessment of
vulnerabilities over time in industrial components. The proposed model is intended to:

• Identify the root causes and nature of vulnerabilities, which will enable the extraction
of new requirements and test cases.

• Support the prioritization of patching.
• Track vulnerabilities during the whole lifespan of industrial components.
• Support the development and maintenance of industrial components.

To accomplish this task, the proposed model comprises two basic elements: (1) the
model itself, which is capable of representing the internal structure of the system under test;
(2) a set of metrics, which allow conclusions to be drawn about the origin, distribution, and
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severity of vulnerabilities. Both the model and metrics are very flexible and exhibit some
properties that make them suitable for industrial components, and can also be applied to
enhance the ISA/IEC 62443 standard.

The content in this section is distributed into four sections, namely:

1. Model: The proposed model is explained, together with the systems in which it can
be applied and the algorithms that are used to build it.

2. Metrics: Metrics are a great tool to measure the state of the system and to track its
evolution. The proposed metrics and their usage are described in this section.

3. Properties: The main features of the proposed model and metrics (e.g., granularity
of the analysis, analysis over time, and patching policy prioritization support) are
described in detail.

4. Applicability: Even though the reviewed standards exhibit some gaps, the proposed
model aims to serve as the first step towards generating a set of tools to perform a
vulnerability analysis in a reliable and continuous way. This last section will discuss
the requirements of the ISA/IEC 62443-4-1 that can be enhanced using our model.

3.1. Description of the Model

The proposed model is based on directed graphs. It requires knowledge of the internal
structure of the device to be evaluated (i.e., the assets, both hardware and software, that
comprise it and the relationships between them). This section defines the most basic
elements that make up the model, the algorithms to build it for any given system, and its
graphical representation.

Definition 1. A System Under Test (SUT) (following the denomination in the ISA/IEC 62443
standard [47], the SUT may be an industrial component, a part of an industrial component, a set of
industrial components, a unique technology that may never be made into a product, or a combination
of these) is now represented by an Extended Dependency Graph (EDG) model G = (〈A, V〉, E)
that is based on directed graphs, where A and V represent the nodes of the graphs, and E represents
its edges or dependencies:

• A = {a1, . . . , an} represents the set of assets in which the SUT can be decomposed, where n is
the total number of obtained assets. An asset a is any component of the SUT that supports
information-related activities and includes both hardware and software [75–77]. Each asset is
characterized by its corresponding Common Platform Enumeration (CPE) [78–80] identifier,
while its weaknesses are characterized by the corresponding CWE identifier. In the EDG model,
the assets are represented by three types of nodes in the directed graphs (i.e., root nodes, asset
nodes, and cluster).

• V = {v1, . . . , vq} represents the set of known vulnerabilities that are present in each asset of
A, where q is the total number of vulnerabilities. They are characterized by the corresponding
CVE and CVSS values. In the EDG model, vulnerabilities are represented using two types of
nodes in the directed graphs (i.e., known vulnerability nodes and clusters).

• E = {eij|∀i, j ∈ {1, . . . , n + q} such that i 6= j} represents the set of edges or dependencies
among the assets, and between assets and vulnerabilities. eij indicates that a dependency
relation is established from asset ai to asset aj. Dependencies are represented using two
different types of edges in the EDG (i.e., normal dependency and deprecated asset/updated
vulnerability edges).

In other words, the EDG model can represent a system, from its assets to its vulnerabil-
ities, and its dependencies as a directed graph. Assets and vulnerabilities are represented
as nodes, whose dependencies are represented as arcs in the graph. The information in the
EDG is further enhanced by introducing metrics.

The EDG model of a given SUT will include four types of node and two types of
dependency. The graphical representation for each element is shown in Table 1. Figure 1
shows an example of a simple EDG and its basic elements. All of the elements that make
up an EDG will be explained in more detail below:
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Figure 1. Basic elements of an EDG. Note that clusters are not displayed in this figure. For clusters,
see Figure 2. For metric definitions, see Section 3.2.
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Figure 2. Creating clusters. Application of the two proposed criteria to the creation of clusters to
simplify the graph, where (a) represents the initial EDG: (1) Establishing a threshold to select which
vulnerability stays outside the cluster (upper side). In step (b1), potential clusters are detected
according to the established threshold, while in (c1) the final EDG with the generated clusters is
shown. The severity value (CVSS) for v31 and v32 is supposed to be lower than the establish threshold.
(2) Choosing the absence of vulnerabilities as the criterion to create clusters (lower side). In step (b2),
nodes with no vulnerability are detected. In (c2), the final EDG with the generated clusters is shown.
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Table 1. Overview of the information that is necessary to define each of the EDG elements.

Symbol Notation Meaning Values

� A(t) Root Node /
Device Node CPEcurrent

© a(t) Asset Node CPEprevious, CPEcurrent, CWEai (t)

a(t) Cluster {CPEprevious, CPEcurrent, CWEai (t)}, {CVEai (t), CVSSvi (t), CAPECwi (t)}, {Dependencies}

H v(t) Known Vulnerability Node CVEai (t), CVSSvi (t), CAPECwi (t)

−→ e(t) Dependency Relation —

99K e(t) Updated Asset /
Patched Vulnerability —

3.1.1. Types of Node

The EDG model uses four types of nodes:

• Root nodes represent the SUT,
• Asset nodes represent each one of the assets of the SUT,
• Known vulnerability nodes represent the vulnerabilities in the SUT, and
• Clusters summarize the information in a subgraph.

Root nodes (collectively, set GR) are a special type of node that represents the whole
SUT. Any EDG starts in a root node and each EDG will only have one single root node,
with an associated timestamp (t) that indicates when the last check for changes was done.
This timestamp is formatted following the structure defined in the ISO 8601 standard for
date and time [81].

Asset nodes (collectively, set GA) represent the assets that comprise the SUT. The
EDG model does not impose any restrictions on the minimum number of assets that the
graph must have. However, the SUT can be better monitored over time when there is a
higher number of assets. Moreover, the results and conclusions obtained will be much
more accurate. Nevertheless, each EDG will have as many asset nodes as necessary, and
the decomposition of assets can go as far and to as low-level as needed.

Each asset node node will be characterized by the following set of values:

• CPEcurrent: Current value for the CPE. This points to the current version of the asset it
refers to.

• CPEprevious: Value of the CPE that identifies the previous version of this asset. This
will be used by the model to trace back all the versions of the same asset over time,
from the current version to the very first version.

• CWEai (t): Set of all the weaknesses that are related to the vulnerabilities present in
the asset. The content of this list can vary depending on the version of the asset.

Figure 3 illustrates how the tracking of the versions of an asset using CPE works. On
the one hand, version ai is the current version of asset a. It contains its current CPE value
and the CPE of its previous version. On the other hand, a2 and a1 are previous versions of
asset a. The last value of a1 points to a null value. This indicates that it is the last value in
the chain, and therefore the very first version of the asset a.
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Figure 3. Tracking dependencies between the previous and current CPE values for asset a.

Known vulnerability nodes (collectively, set GV) represent a known vulnerability
present in the asset that it relates to. Each asset will have a known vulnerability node for
each known vulnerability belonging to that asset. Assets alone cannot tell how severe or
dangerous the vulnerabilities might be, so unique characterization of vulnerabilities is
crucial [30].

To identify each known vulnerability node, each will be characterized by the following
set of features (formally defined in Section 3.2:

• CVEai (t): This serves as the identifier of a vulnerability of asset ai.
• CVSSvi (t): This metric assigns a numeric value to the severity of vulnerability vi.

Each CVE has a corresponding CVSS value.
• CAPECwi (t): Each vulnerability (CVE) is a materialization of a weakness (CWE) wi

that can be exploited using a concrete attack pattern. In many cases, each CWE has
more than one Common Attack Pattern Enumeration and Classification (CAPEC) [82,83]
associated. Consequently, this field is a set that contains all the possible attack patterns
that can exploit the vulnerability that is being analyzed.

Clusters (collectively, set GS) are a special type of node that summarizes and simplifies
the information contained in a subgraph in an EDG. Figure 2 shows how the clusters work.

To identify each cluster, and to be able to recover the information that they sum-
marize, each is characterized by the data that define each of the elements that they
contain: {CPEprevious, CPEcurrent, CWEai (t)}, (CVEai (t), CVSSvi (t), {CAPECwi (t)}), and
their dependencies.

Two types of criteria can be used to create clusters and to simplify the obtained graph
Figure 2:

1. Absence of vulnerabilities: Using this criterion, clusters will group all nodes that
contain no associated vulnerabilities.

2. CVSS score below a certain threshold: With this criterion, a threshold for the CVSS
scores will be chosen. Nodes whose CVSS score is less than the defined threshold will
be grouped into a cluster.

3.1.2. Types of Edge

In the EDG model, edges play a key role in representing dependencies. Two types of
edge can be identified:

• Normal dependencies relate two assets, or an asset and a vulnerability. They represent
that the destination element depends on the source element. Collectively, they are
known as set GD.

• Deprecated asset or patched vulnerability dependencies indicate when an asset or a
vulnerability is updated or patched. They represent that the destination element used
to depend on the source element. Collectively, they are known as set GU .

The possibility of representing old dependencies brings the opportunity to reflect
the evolution of the SUT over time. When a new version of an asset is released, or a
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vulnerability is patched, the model will be updated. Their dependencies will change
from a normal dependency to a deprecated asset or vulnerability dependency to reflect
that change.

3.1.3. Conditions of Application of EDGs

The EDG model is applicable to SUTs that meet the following set of criteria:

• Software and hardware composition: In our approach, the model is created by means
of a white-box analysis. The absence of or impossibility to perform a white-box
analysis limits the ability to create an accurate model. Some knowledge about the
internal structure and code is expected. This information is usually only known by
the manufacturer of the component unless the component is publicly available or
open-source. It should be also possible to decompose the SUT into simpler assets to
generate a relevant EDG.

• Existence of publicly known vulnerabilities: The EDG model focuses on known vul-
nerabilities. This is not critical because many industrial components use commercial
or open-source elements. The SUT must be composed of assets for which public
information is available. If the majority of SUT assets are proprietary, or the SUT is an
ad hoc development that is never exposed, then the generated EDG will not evolve.
Therefore, the analysis will not be relevant.

3.1.4. Steps to Build the Model

This section explains the process and algorithms that were used to build the corre-
sponding EDG of a given SUT. The main scenarios that can be found are also described.

Before extracting useful information about the SUT, the directed graph associated with
the SUT has to be built. This comprises several steps, which are described in the following
paragraphs (see the flowchart in Figures 4 and 5):

Step 1—Decompose the SUT into assets. For the model to work properly, it relies on
the SUT being able to be decomposed into assets. With this in mind, the first step involves
obtaining the assets of the SUT, either software or hardware. In the CC, this process is
called modular decomposition of the SUT [53]. Ideally, every asset should be represented
in the decomposition process, but this is not compulsory for the model to work properly.
Each one of the assets obtained in this step will be represented as an asset node. In this
step, the dependencies among the obtained assets are also added as normal dependencies.

Step 2—Assign a CPE to each asset. Once the assets and their dependencies have been
identified, the next task is to assign the corresponding CPE identifier to each asset. If there
is no publicly available information of a certain asset, and therefore, it does not have a CPE
identifier, then it is always possible to generate one using the fields described in the CPE
naming specification documents [79] for internal use in the model.

Step 3—Add known vulnerabilities to the assets. In this step, the vulnerabilities
(CVEai (t)) of each asset are set. This is done by consulting public databases of known vul-
nerabilities [34,84] looking for existing vulnerabilities for each asset. When a vulnerability
is found, it is added to the model of the SUT, including its dependencies. If there were no
known vulnerabilities in an asset, then the asset would become the last leaf of its branch.
In this step, the corresponding value of the CVSS of each vulnerability is also added to
the model.

Step 4—Assign to each asset its weaknesses and possible CAPECs. After the vulnera-
bilities, the corresponding weaknesses to each vulnerability (CWEai (t)) are added, along
with the corresponding attack patterns (CAPECwi (t)) for each weakness. If there is no
known vulnerability in an asset, then there will be no weaknesses. Meanwhile, it would
be possible to have a known vulnerability in an asset, but no known weakness or attack
pattern for that vulnerability. Finally, more than one CAPEC can be assigned to the same
weakness. Consequently, it would be common to have a set of possible CAPECs that can be
used to exploit the same weakness. It is worth noting that not all of them could be applied
in every scenario.
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Step 5—Computing Metrics and tracking the SUT. At this point, the EDG of the SUT is
completed with all the public information that can be gathered. This last step is to calculate
the metrics defined (for further information, see Section 3.2), generate the corresponding
reports and track the state of the SUT for possible updates in the information of the model.
This step is always triggered when the SUT is updated. This can imply that a new asset can
appear, an old asset can disappear, an old vulnerability can be patched, or a new one can
appear in the SUT. All of these scenarios will be reflected in the model as they arise during
its life cycle.
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Figure 4. Algorithm to generate the initial EDG of a given SUT.
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Figure 5. Example of the process of building the EDG model of a given SUT A. (a) Decompose of the
SUT into assets. (b) Assign a CPE to each asset. (c) Add known vulnerabilities. (d) Add weaknesses
and attack patterns.

3.2. Security Metrics

The EDG model that was proposed in the previous sections is by itself capable of
representing the internal structure of the SUT, and it can display it graphically for the user.
This representation not only includes the internal assets of the SUT, but also captures their
relationships, existing vulnerabilities, and weaknesses. Moreover, assets, vulnerabilities,
and weaknesses are easily identified using their corresponding CPE, CVE, and CWE values,
respectively. Altogether, this constitutes a plethora of information that the model can use
to improve the development and maintenance steps of the SUT, enhance its security, and
track its status during its whole life cycle. Metrics are a great tool to integrate these features
into the model.
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Metrics can serve as a tool to manage security, make decisions, and compare results
over time. They can also be used to systematically improve the security level of an industrial
component or to predict its security level at a future point in time.

In this section, the basic definitions that serve as the foundation of the metrics are
described. Then, the proposed metrics are introduced to complement the functionality of
the EDG model. The main feature of these metrics is that they all depend on time as a
variable, so it is possible to capture the actual state of the SUT, track its evolution over time,
and compare the results.

3.2.1. Basic Definitions

In this section, the basic concepts on which the definitions of the metrics will be based
are formalized.

Definition 2. The set of all possible weaknesses at a time t is represented as CWE(t), where

CWE(t) = {cwe1, . . . , cwem} (1)

and m is the total number of weaknesses at time t. This set contains the whole CWE database defined
by MITRE [38].

Definition 3. The set of all of the possible vulnerabilities at a time t is represented as CVE(t) where

CVE(t) = {cve1, . . . , cvep} (2)

and p is the total number of vulnerabilities. This set contains the whole CVE database defined by
MITRE [34].

Definition 4. The set of all possible attack patterns at a time t is represented as CAPEC(t), where

CAPEC(t) = {capec1, . . . , capecq} (3)

and q is the total number of attack patterns at time t. This set contains the whole CAPEC database
defined by MITRE [82].

Definition 5. The set of weaknesses of an asset ai at a time t is defined as

CWEai (t) = {cwej|cwej is in the asset ai at time t ∧ cwej ∈ CWE(t)

∧∀k 6= j, cwej 6= cwek}
(4)

From this expression, the set of all the weaknesses of a particular asset throughout its life cycle
is defined as

CWEai =
T⋃

t=1

CWEai (t) (5)

where |CWEai | is the total number of non-repeated weaknesses in its entire life cycle.

Definition 6. The set of vulnerabilities of an asset ai at a time t is defined as

CVEai (t) = {cvej|cvej is in the asset ai at time t ∧ cvej ∈ CVE(t)} (6)

From this expression, the set of vulnerabilities of an asset throughout its entire life cycle is
defined as

CVEai =
T⋃

t=1

CVEai (t) (7)

where |CVEai | is the total number of vulnerabilities in its entire life cycle.
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Definition 7. The set of weaknesses of a SUT A with n assets at a time t is defined as:

CWEA(t) =
n⋃

i=1

CWEai (t) (8)

Definition 8. The set of vulnerabilities of a SUT A with n assets at a time t is defined as:

CVEA(t) =
n⋃

i=1

CVEai (t) (9)

Definition 9. The set of vulnerabilities associated with the weakness cwej and to the asset ai at a
time t is defined as:

CVEai |cwej
(t) = {cvek|cvek associated with weakness cwej and to asset ai at time t} (10)

It is worth noting that CWE is used as a classification mechanism that differenti-
ates CVEs by the type of vulnerability that they represent. A vulnerability will usually
have only one associated weakness, and weaknesses can have one or more associated
vulnerabilities [85].

Definition 10. The partition j of an asset ai at time t conditioned by a weakness cwek is defined as

CVEai |cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CVEai (t)} (11)

Definition 11. The partition j of the SUT A at time t conditioned by a weakness cwek is defined as

CVEA|cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CVEA(t)} (12)

Definition 12. The set of attack patterns associated to a weakness wi at a time t is defined as

CAPECwi (t) = {capecj|capecj can exploit weakness wi at time

t ∧ capecj ∈ CAPEC(t)}
(13)

.
Definition 13. The set of metrics that are defined in this research work based on the EDG model is
defined as

M = {m1, . . . , mr} (14)

where r is the total number of metrics. This set can be extended, defining more metrics according to
the nature of the SUT.

3.2.2. Metrics

This section will describe the metrics that were defined based on the EDG model
and the previous definitions. Although it might seem trivial, the most interesting feature
of these metrics is that they all depend on time. Using time as an input variable for the
computation of the metrics opens the opportunity to track results over time, compare
them, and analyze the evolution of the status of the SUT. Furthermore, some metrics take
advantage of time to generate an accumulated value, giving information about the life
cycle of the SUT. Table 2 shows all of the proposed metrics, their definition, and their
reference values.
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Table 2. Proposed metrics for the model.

Metric Definition Reference Value

V
U

LN
ER

A
BI

LI
TI

ES

M0(A) = |CVEA(t)|
n(t) Arithmetic mean of vulnerabilities in the SUT

A, where n(t) is the number of assets in a SUT
at a time t. M0 shows how many vulnerabil-
ities would be present in each asset if they
were evenly distributed among the assets of
the SUT. The result of M0 can serve as a pre-
liminary analysis of the SUT, related to the
criticality of its state. From Equation (8).

M0 < 1: The number of vulnerabilities is
lower than the number of assets. M0 ≥ 1:
Every asset has at least one vulnerability.

M1(A, t) = |CVEA(t)| Number of vulnerabilities in a SUT A at time
t. From Equation (8).

Ideally, the values of M1 should be zero (no
vulnerability in A), but the lower the value of
M1, the better.

M2(A) = ∑T
t=1 |CVEA(t)| = ∑T

t=1 M1(A, t) Number of vulnerabilities in a SUT A
throughout its entire life cycle T. This metric
computes the accumulated value of the num-
ber of vulnerabilities of a SUT throughout its
entire life cycle. From Equation (8).

The lower the value of M2, the better.

M3(ai, t) = |CVEai (t)| Number of vulnerabilities in an asset ak at
time t The values of M3 can be useful during
a vulnerability analysis, or when performing
a penetration test, to identify the asset with
more vulnerabilities. From Equation (6).

Ideally, the value of M3 should be zero.

M4(ak, t) =
|CVEak (t)|

∑n
i=1 |CVEai (t)|

Relative frequency of vulnerabilities of the
asset ak at a time t. From Equation (6).

Ideally, the value of M4 should be zero, or
at least M4 ≤ 1

n(t) , being n(t) the number
of assets in the SUT. This value can also be
expressed as the percentage of vulnerabili-
ties of asset ai respect to the total number
of vulnerabilities in the SUT, M4(ak, t) =
|CVEak (t)|

∑n
i=1 |CVEai (t)|

·100

M5(ai, cwej, t) = |CVEai |cwej
(t)| Multiplicity of weakness cwej of the asset ai

at a time t. This metric represents the num-
ber of times a weakness is present among the
vulnerabilities of the asset ai. This is possible
because a vulnerability can have associated
the same weakness as other vulnerabilities.
From Equation (9).

Ideally, the value of M5 should be zero, or at

least, M5 ≤
|CVEA|cwej

(t)|
n(t) , being n(t) the num-

ber of assets in the SUT. The value of the met-
ric could be further narrowed by assuming
that cwej will be present in all but one asset, so

M5 ≤
|CVEA|cwej

(t)|
n(t)−1 to be in acceptable values.

M6(A, cwej, t) = |CVEA|cwej
(t)| Multiplicity of weakness cwej of the SUT A at

a time t. This metric represents the number
of times a weakness is present among the vul-
nerabilities of the SUT A. From Equation (11).

Ideally, the value of M6 should be zero.

W
EA

K
N

ES
SE

S M7(A, t) = |CWEA(t)| Number of weaknesses in a SUT A at time t.
From Equation (7).

Ideally, the value of M7 should be zero (no
weakness in A), but the lower the value of
M7, the better.

M8(A) = ∑T
t=1 |CWEA(t)| = ∑T

t=1 M7(A, t) Number of weaknesses in a SUT A through-
out its entire life cycle T. This metric com-
putes the accumulated value of weaknesses
of a SUT throughout its entire life cycle. From
Equation (7)

The lower the value of M8, the better.

In addition to the metrics in Table 2, the model allows the definition of other types
of metrics according to the analysis to be performed, and the nature of the SUT (e.g., the
vulnerability evolution function for SUT A up to time t for all vulnerabilities could be
defined as the linear regression of the total number of vulnerabilities in each time t for SUT
A, or using any other statistical model).

3.3. Properties

Together, the EDG model and the defined metrics exhibit a series of characteristics that
make them suitable for vulnerability assessment. These properties represent an advantage
over the techniques reviewed in the state of the art, including automatic inference of root
causes, spatial and temporal distribution of vulnerabilities, and prioritization of patching,
which will be described in the following subsections.

3.3.1. Automatic Inference of Root Causes

Each CWE natively contains information that is directly related to the root cause of a
vulnerability. From this information, new requirements and test cases can be proposed.

3.3.2. Spatial and Temporal Distribution of Vulnerabilities

The key feature of the proposed model is the addition of the temporal dimension
in the analysis of vulnerabilities. This makes it possible to analyze the location of the
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vulnerabilities both in space (in which asset) and time (their recurrence), which allows us
to track the state of the device throughout the whole life cycle. This approach also enables
further analysis of the SUT, by updating data in the model, such as new vulnerabilities that
are found or new patches that are released.

Each time that a new vulnerability is found, or an asset is patched (i.e., via an update),
the initial EDG is updated to reflect those changes. An example of this process can be seen
in Figure 6.

At time t0, the initial graph of the SUT A is depicted in Figure 6. Because there is no
vulnerability at that time, this graph can be simplified using the cluster notation, with just
a cluster containing all assets. At time t1, a new vulnerability that affects the asset a2 is
discovered. At time t2, the asset a2 is updated. This action creates a new version of asset
a2, asset a3. Because the vulnerability was not corrected in the new update, both versions
contain the vulnerability that was initially presented in asset a2. Finally, at time t3, the asset
a3 is updated to its new version a4, and the vulnerability is corrected.

This approach enables a further analysis of the SUT, including updated data, according
to new vulnerabilities that are found or new patches that are released.
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a2 a1

At2

a3 a2 a1

At3

a3 a2a4
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not patched

Asset a3 is updated by a4 and V1 is
patched

Figure 6. Representation of the temporal behavior in the graphical model using the two kinds of
dependencies of the model. It is worth mentioning that these graphs could be further simplified by
taking advantage of the cluster notation, as shown at the bottom of this figure.

3.3.3. Patching Policies Prioritization Support

The proposed model is not only able to include known vulnerabilities associated with
an asset, but it also provides a relative importance sorting of vulnerabilities by CVSS. Rely-
ing on the resulting value, it is possible to assist in the vulnerability patching prioritization
process. Furthermore, the presence of an existing exploit for a known vulnerability can be
also be taken into account, when deciding which vulnerabilities need to be patched first. A
high CVSS value combined with an available exploit for a given vulnerability is a priority
when patching.

4. Real Use Case

In this section, we applied the EDG model to analyze the vulnerabilities of the Open-
PLC project. For the sake of simplicity, the use case focuses on version one (V1) of OpenPLC.
We centered the analysis on two of the assets that compose this version of the project:
libssl and nodejs.
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OpenPLC is the first functional standardized open-source Programmable Logic Con-
troller (PLC), both in software and hardware [86–89]. It was mainly created for research
purposes in the areas of industrial and home automation, the Internet of Things (IoT),
and SCADA. Given that it is the only controller that provides its entire source code, it
represents an engaging low-cost industrial solution—not only for academic research but
also for real-world automation [90,91].

4.1. Structure of OpenPLC

The OpenPLC project consists of three parts:

1. Runtime: It is the software that plays the same role as the firmware in a traditional
PLC. It executes the control program. The runtime can be installed in a variety of
embedded platforms, such as the Raspberry Pi, and in Operating Systems (OSs) such
as Windows or Linux.

2. Editor: An application that runs on a Windows or Linux OS that is used to write and
compile the control programs that will be later executed by the runtime.

3. HMI Builder: This software is to create web-based animations that will reflect the
state of the process, in the same manner as a traditional HMI.

When installed, the OpenPLC runtime executes a built-in webserver that allows
OpenPLC to be configured and new programs for it to run to be uploaded. In this use case,
we focused the analysis on the runtime of OpenPLC V1.

4.2. Setup Through the Analysis

Ubuntu Linux was selected as the platform to install the runtime of OpenPLC V1.
Ubuntu Linux provides comprehensive documentation, previous versions are accessible,
and software dependencies can easily be obtained.

To make the analysis fair, a contemporary operating system was selected, according
to the version of Ubuntu that was available at the release time of OpenPLC V1. The Long
Term Support (LTS) version was chosen because industry tends to work with the most
stable version available of any software and security updates are provided for a longer
time. OpenPLC V1 was released in 2016/02/05, so we found that Ubuntu 14.04 LTS was
the most suitable version [92]. The setup consisted of OpenPLC installed on 14.04 LTS
Ubuntu Linux in a virtual machine. All configuration options were by default.

4.3. Building the EDG

We built the entire EDG for OpenPLC V1, which can be found in Appendix B. Never-
theless, for the sake of clarity, we restricted this analysis in two ways: (1) focusing on two
assets, libssl and nodejs; (2) integrating only security updates (discarding updates that
introduced more functionalities). Table 3 shows the updates and their date of availability for
both libssl [93] and nodejs [94] for Ubuntu 14.04 LTS. There were two security updates
available for the amd64 architecture for each asset. Figure 7 illustrates step by step the
partials EDG graphs, and Figure 8 shows the final EDG with all the updates merged in a
single graph.

Table 3. Update information of both libssl and nodejs.

Asset 1st Update Solved Vulnerabilities (CVSS) 2nd Update Solved Vulnerabilities (CVSS)

libssl 2014/04/07 CVE-2014-0076 (1.9)
CVE-2014-0160 (5.0)

2018/12/06 CVE-2018-5407 (1.9)
CVE-2018-0734 (4.3)

nodejs 2014/03/27 — 2018/08/10 CVE-2016-5325 (4.3)
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Figure 7. Temporal evolution of the EDG for OpenPLC V1 for both libss and nodejs.

OpenPLC

server.js

nodejs

libssl

CVE-2014-0076

CVSS: 1.9

CVE-2014-0160

CVSS: 5.0

CVE-2016-5325

CVSS: 4.3

nodejs

libssl

CVE-2018-5407
CVSS: 1.9

CVE-2018-0734

CVSS: 4.3

cpe:2.3:a:nodejs:nodejs:0.10.25:1.2:*:*:*:*:*:*

cpe:2.3:a:openssl:openssl:1.0.0f:2.27:*:*:*:*:*:*

cpe:2.3:o:openplcproject:openplc_firmware:1:*:*:*:*:*:*:*

cpe:2.3:a:nodejs:nodejs:0.10.25:1:*:*:*:*:*:*

cpe:2.3:a:openssl:openssl:1.0.0f:2:*:*:*:*:*:*

Figure 8. Final EDG for libssl and nodejs integrating all the updates for Ubuntu Linux 14.04 for
amd64 architecture.

4.4. Analysis of the EDG

Using Figure 8 as reference, we can analyze the obtained EDG:

1. Analysis of the induced EDG model: The structure, assets, and dependencies are the
focus of this first step.
We can observe that libssl is used by nodejs, and they are not at the same level of
the hierarchy. So vulnerabilities could propagate upwards through the EDG.

2. Vulnerability analysis: Vulnerability number, distribution, and severity are analyzed
in this step. A proposal for vulnerability prioritization is also generated.
We can highlight that nodejs had one vulnerability discovered after its first update,
whereas libssl had vulnerabilities in both periods of time. We could argue that, as
nodejs is the most accessible asset from the exterior, its vulnerabilities should be first
addressed, even though the associated CVSS is not the highest one.

3. Weaknesses analysis: Finally, the root cause of each vulnerability is found. In this
step, new requirements, test cases, and training activities are proposed based on the
results of the analysis.
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Table 4 shows the root cause for each vulnerability. Using this data, new requirements,
test cases, and training activities were proposed (see Appendix C).

Table 4. Relationship between vulnerabilities and weaknesses for both libssl and nodejs.

CVE CVSS CWE Description

CVE-2014-0076 1.9 CWE-310 Cryptographic Issues
CVE-2014-0160 7.5 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
CVE-2016-5325 6.1 CWE-113 Improper Neutralization of CRLF Sequences in HTTP Headers (’HTTP Response Splitting’)
CVE-2018-0734 5.9 CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CVE-2018-5407 4.7
CWE-203
CWE-200

Observable Discrepancy
Exposure of Sensitive Information to an Unauthorized Actor

5. Conclusions and Future Work

Vulnerability analysis is a critical task which ensures the security of industrial com-
ponents. The EDG model that we propose performs continuous vulnerability assessment
throughout the entire life cycle of industrial components. The model is built on a directed
graph-based structure and a set of metrics based on globally accepted security standards.
Metrics can be used by the model to improve the development process of the SUT, enhance
its security, and track its status. The key feature of the proposed model is the addition of
the temporal dimension in the analysis of vulnerabilities. The location of vulnerabilities
can be analyzed in both space (in which asset) and time (their recurrence), which allows
the state of the device to be tracked throughout the whole life cycle.

The model was successfully applied to the OpenPLC use case, which demonstrated its
advantages, applicability, and potential. The use case showed that the model can assist in
updating management activities, applying patching policies, launching training activities,
and generating new test cases, and requirements. This has significant implications for
cybersecurity evaluators, as it can serve as a starting point for identifying vulnerabilities,
weaknesses, and attack patterns.

Further research will enhance the EDG by adding a mathematical model to aggregate
the values of the CVSS metric for each asset, and a value for the whole SUT. This will
enable the comparison of different SUTs over time. More improvements will be made in
the prioritization of patching, taking into account the context and the functionalities of the
SUT. Finally, historical information about the developers can be integrated into the EDG
model to predict future vulnerabilities.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CC Common Criteria
CAPEC Common Attack Pattern Enumeration and Classification
COTS Commercial Off-The-Shelf
CPE Common Platform Enumeration
CPS Cyber-Physical System
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
EAL Evaluation Assurance Level
EDG Extended Dependency Graph
ES Embedded System
IACS Industrial Automation Control System
IoT Internet Of Things
PLC Programmable Logic Controller
SUT System Under Test

Appendix A. Applicability in the Context of ISA/IEC 62443

In this section, the potential application of the proposed EDG model to the existing
security standards is described. The proposed EDG model can be used isolated by itself, or
in combination with other techniques that complement the analysis. In this sense, the EDG
model can be used to enhance some tasks in the security evolution processes defined by
security standards.

The ISA/IEC 62443-4-1 standard specifies 47 process requirements for the secure
development of products used in industrial automation and control systems [49]. Thus, the
EDG model was developed to enhance the execution of one of those requirements defined
by the standard: the “SVV-3: Vulnerability testing” requirement, serving as a support
for the execution of Practice 5—Security Verification and Validation testing. According
to the SVV-3 requirement, both known and unknown vulnerability analysis has to be
performed. The EDG model proposed in this research work is intended to support the
identification of known vulnerabilities, their dependencies, and the possible consequences
of their propagation, yielding the opportunity to analyze them systematically. Nevertheless,
more requirements of the ISA/IEC 62443 can be mapped to one or more of the metrics
defined in this research work. Using this relationship, it is possible to apply the EDG model
to enhance the analysis and review of the following requirements:

Appendix A.1. Security Requirements—2: Threat Model (SR-2)

“A process shall be employed to ensure that all products have a threat model specific
to the current development scope of the product. The threat model shall be reviewed and
verified periodically” [49]. The proposed EDG model can serve as an abstraction of the
threat model that has to be obtained. Moreover, the standard states that this threat model
has to be reviewed periodically for updates. Given that the EDG of a given SUT evolves
with every update, the threat model would be always up-to-date. Potential threats and
their severity using the CVSS can also be analyzed with this proposal. Finally, these results
can be used to enhance the risk assessment of the SUT.

Appendix A.2. Security Management—13: Continuous Improvement (SM-13)

“A process shall be employed for continuously improving the secure development life
cycle” [49]. The EDG model can be used to identify recurrent issues in the development of
an industrial component, due to its ability to track the state of a SUT over time. Consider
the scenario where a piece of code contains an unknown vulnerability. For example, this
code can implement a communication protocol or the generation of a cryptographic key.
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If this piece of code is recurrently integrated into many types of devices, then when they
are released to the market, the end-users can identify that vulnerability and report it to the
product supplier. The EDG can reflect the presence of that vulnerability. If an EDG is done
for each type of device, then this problem can be detected beforehand. Using the CWE, the
root problem can be detected. With this information, new training and corrective actions
can be proposed to avoid this issue.

Appendix A.3. Specification of Security Requirements—5: Security Requirements Review (SR-5)

“A process shall be employed to ensure that security requirements are reviewed,
updated, and approved” [49]. As before, taking advantage of the previous scenario,
the information extracted from the generated EDG model can be used to propose new
requirements or to update the existing requirements.

Appendix A.4. Security Verification and Validation Testing—4: Penetration Testing (SVV-4)

“A process shall be employed to identify and characterize security-related issues via
tests that focus on discovering and exploiting security vulnerabilities in the product” [49].
The EDG model facilitates the identification of possible entry points to the SUT when carry-
ing out a penetration test. In addition, existing attack patterns (CAPEC) and weaknesses
(CWE) can serve as a starting point to discover unknown vulnerabilities and exploits.

Appendix A.5. Management of Security-Related Issues—3: Assessing Security-Related
Issues (DM-3)

“A process shall be employed for analyzing security-related issues in the product” [49].
When a new vulnerability is detected, end-users will report it to the product suppliers.
Then, the corresponding EDG model of that SUT will be updated to reflect that change.
This information, in addition to that previously contained in the EDG, can be used to obtain
the severity value of the discovered vulnerability using the CVSS. This also facilitates the
identification of root causes, related security issues, or the impact.

Table A1. Mapping between the developed metrics and the requirements they refer in the ISA/IEC
62443. SR (Security Requirements), SM (Security Management), SVV (Security Validation and
Verification), DM (Management of Security-Related Issues).

Metric SR-2 SR-5 SM-13 SVV-4 DM-3

M0(A) = |CVEA(t)|
n(t) � � � � �

M1(A, t) = |CVEA(t)| � � � � �
M2(A) = ∑T

t=1 |CVEA(t)| = ∑T
t=1 M1(A, t) � � � � �

M3(A, t) = |CVEai (t)| � � � � �

M4(ak, t) =
|CVEak (t)|

∑n
i=1 |CVEai (t)|

� � � � �

M5(ai, cwej, t) = |CVEai |cwej
(t)| � � � � �

M6(A, cwej, t) = |CVEA|cwej
(t)| � � � � �

M7(A, t) = |CWEA(t)| � � � � �
M8(A) =

⋃T
t=1 |CWEA(t)| =

⋃T
t=1 M7(A, t) � � � � �

Finally, the ISA/IEC 62443-4-2 document defines four types of components of an IACS
(i.e., software applications, embedded devices, host devices, network devices) [95]. The
proposed model is capable of representing the inherent complexity of each of them.

Appendix B. EDG for OpenPLC V1

This appendix contains the generated EDG for OpenPLC V1.



Sensors 2022, 22, 2126 23 of 28

OPLC
Compiler

OpenPLC cpe:2.3:o:openplcproject:openplc_v1_firmware:-:*:*:*:*:*:*:*

OPLC
Starter

server.js

linux-
vdso

libstdc++libgcc_s

/lib64 
/ld-linux-
x86-64

libpthread

libc

nodejs

openplc libz

libcares

libv8librt

libdl

libssl

libcrypto

libm

CVE-2016-
1234
CVSS: 5.0

CVE-2015-
7547
CVSS: 6.8

CVE-2015-
5277
CVSS: 7.2

CVE-2014-
9984
CVSS: 7.5

CVE-2014-
6040
CVSS: 5.0

CVE-2017-16997
CVSS: 9.3

CVE-2014-
4043
CVSS: 7.5

CVE-2014-
0475
CVSS: 6.8

CVE-2013-
7423
CVSS: 5.0

CVE-2018-
12886

CVSS: 7.5

CVE-2019-
15847

CVSS: 5.0

CVE-2016-
9843
CVSS: 7.5CVE-2016-

9842
CVSS: 6.8

CVE-2016-
9841
CVSS: 7.5

CVE-2016-
9840
CVSS: 6.8

CVE-2017-
1000381
CVSS: 5.0

CVE-2019-
15847
CVSS: 7.5

CVE-2018-
12115
CVSS: 5.0

CVE-2018-
7159

CVSS: 5.0

CVE-2018-
5407
CVSS: 1.9 CVE-2017-

16024
CVSS: 4.0

CVE-2016-5325
CVSS: 4.3

CVE-2016-7099
CVSS: 4.3

CVE-2016-
3956
CVSS: 5.0

CVE-2016-
2216
CVSS: 4.3

CVE-2016-
2086
CVSS: 5.0

CVE-2016-
8610
CVSS: 5.0

CVE-2016-6306
CVSS: 4.3

CVE-2016-6304
CVSS: 7.8

CVE-2016-6303
CVSS: 7.5

CVE-2016-
6302
CVSS: 5.0

CVE-2016-
2842
CVSS: 10.0

Z

CVE-2016-
2182
CVSS: 7.5

CVE-2016-
2181
CVSS: 5.0

CVE-2016-2180
CVSS: 5.0

CVE-2016-2179
CVSS: 5.0

CVE-2016-
2178
CVSS: 2.1

CVE-2016-2177
CVSS: 7.5

CVE-2016-
0800
CVSS: 4.3

CVE-2016-0799
CVSS: 10.0

CVE-2016-
0798
CVSS: 7.8

CVE-2016-
0797
CVSS: 5.0

CVE-2016-
0705
CVSS: 10.0

CVE-2016-
0704
CVSS: 4.3

CVE-2016-
0703
CVSS: 4.3 CVE-2016-

0702
CVSS: 1.9

CVE-2015-
4000
CVSS: 4.3

CVE-2015-
3197
CVSS: 4.3

CVE-2015-
3194
CVSS: 5.0

CVE-2015-
1792
CVSS: 5.0

CVE-2015-1791
CVSS: 6.8

CVE-2015-
1790
CVSS: 5.0

CVE-2015-1789
CVSS: 4.3

CVE-2015-1788
CVSS: 4.3

CVE-2015-
0293
CVSS: 5.0

CVE-2015-
0289
CVSS: 5.0

CVE-2015-
0288
CVSS: 5.0

CVE-2015-
0287
CVSS: 5.0

CVE-2015-
0286
CVSS: 5.0

CVE-2015-
0209CVSS: 6.8

CVE-2017-3735
CVSS: 5.0

CVE-2015-
3196
CVSS: 4.3

CVE-2015-0292
CVSS: 7.5

CVE-2014-
8176
CVSS: 7.5

CVE-2014-5139
CVSS: 4.3

CVE-2014-
3568
CVSS: 4.3

CVE-2014-
3567
CVSS: 7.1

CVE-2014-
3566
CVSS: 4.3

CVE-2014-
3513
CVSS: 7.1

CVE-2014-
3512
CVSS: 7.5

CVE-2014-
3511
CVSS: 4.3

CVE-2014-
3509
CVSS: 6.8

CVE-2014-
3510
CVSS: 4.3

CVE-2014-
3508
CVSS: 4.3

CVE-2014-3507
CVSS: 5.0

CVE-2014-
3506
CVSS: 5.0

CVE-2014-3505
CVSS: 5.0

CVE-2014-
3470
CVSS: 4.3

CVE-2014-
0224
CVSS: 5.8

CVE-2014-
0221
CVSS: 4.3

CVE-2014-
0198
CVSS: 4.3

CVE-2014-0195
CVSS: 6.8

CVE-2014-0160
CVSS: 5.0

CVE-2013-
6450
CVSS: 5.8

CVE-2013-
6449
CVSS: 4.3

CVE-2013-
4353
CVSS: 4.3

CVE-2013-
0169
CVSS: 2.6

CVE-2013-
0166
CVSS: 5.0

CVE-2012-
2686
CVSS: 5.0

CVE-2012-2333
CVSS: 6.8

CVE-2010-5298
CVSS: 4.0

Figure A1. EDG for OpenPLC V1. Notice that, for simplicity, CWE and CAPEC values are omitted,
and only the CPE identifier of the SUT is shown.

Appendix C. Proposed Requirements, Training, and Test Cases

In this appendix, we show the generated requirements, training, and test cases from
the EDG model of OpenPLC V1.

Table A2. An example of generated requirements for OpenPLC V1.

CWE ID Requirements

CWE-119 Use languages that perform their own memory
management.

CWE-119

Use libraries or frameworks that make it easier
to handle numbers without unexpected conse-
quences. Examples include safe integer han-
dling packages such as SafeInt (C++) or Inte-
gerLib (C or C++).

CWE-119, CWE-200
Use a CPU and operating system that offers
Data Execution Protection (NX) or its equiva-
lent.

CWE-190, CWE-200

Ensure that all protocols are strictly defined,
such that all out-of-bounds behaviors can be
identified simply, and require strict confor-
mance to the protocol.
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Table A2. Cont.

CWE ID Requirements

CWE-310

Clearly specify which data or resources are valu-
able enough that they should be protected by en-
cryption. Require that any transmission or stor-
age of this data/resource should use well-vetted
encryption algorithms. Up-to-date algorithms
must be used, and the entropy of the keys must
be sufficient for the application.

CWE-113 Use an input validation framework such as Struts
or the OWASP ESAPI Validation API.

CWE-113

Assume all input is malicious. Use an "accept
known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform
to specifications. Reject any input that does not
strictly conform to specifications, or transform it
into something that does.

CWE-113

Hard-code the search path to a set of known-safe
values (such as system directories), or only allow
them to be specified by the administrator in a con-
figuration file. Do not allow these settings to be
modified by an external party.

CWE-119

Run or compile the software using features or ex-
tensions that automatically provide a protection
mechanism that mitigates or eliminates buffer
overflows.

CWE-119

Replace unbounded copy functions with analo-
gous functions that support length arguments,
such as strcpy with strncpy. Create these if they
are not available.

Table A3. Example of proposed training for OpenPLC V1.

CWE ID Training

CWE-113, CWE-119

Identification of all potentially relevant properties
of an input (length, type of input, the full range of
acceptable values, missing or extra inputs, syntax,
consistency across related fields).

CWE-113, CWE-119 Input validation strategies.

CWE-113, CWE-119, CWE-200 Allowlists and Denylists.

CWE-113, CWE-119 Character encoding compatibility.

CWE-113, CWE-119

Buffer overflow detection during compilation
(e.g., Microsoft Visual Studio /GS flag, Fe-
dora/Red Hat FORTIFY_SOURCE GCC flag,
StackGuard, and ProPolice).

CWE-113, CWE-119CWE-200 Secure functions, such as strcpy with strncpy. Cre-
ate these if they are not available.

CWE-113, CWE-119CWE-190 Secure programming: memory management.

CWE-113, CWE-119
Understand the programming language’s under-
lying representation and how it interacts with nu-
meric calculation.

CWE-113, CWE-119 System compartmentalization.

CWE-200, CWE-310 Certificate management.

CWE-200, CWE-310 Certificate pinning.

CWE-310 Encryption integration (do not develop custom or
private cryptographic algorithms).

CWE-310 Secure up-to-date cryptographic algorithms.

CWE-200 Shared resource management.

CWE-200 Thread-safe functions.
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Table A4. Example of generated test cases for OpenPLC V1.

Capec ID Test Cases

CAPEC-119
Check for buffer overflows through manipulation
of environment variables. This test leverages im-
plicit trust often placed in environment variables.

CAPEC-119 Static analysis of the code: secure functions and
buffer overflow.

CAPEC-119

Feed overly long input strings to the program in
an attempt to overwhelm the filter (by causing a
buffer overflow) and hoping that the filter does
not fail securely (i.e. the user input is let into the
system unfiltered)

CAPEC-119

This test uses symbolic links to cause buffer over-
flows. The evaluator can try to create or manip-
ulate a symbolic link file such that its contents
result in out-of-bounds data. When the target
software processes the symbolic link file, it could
potentially overflow internal buffers with insuffi-
cient bounds checking.

CAPEC-119 Static analysis of the code: secure functions and
buffer overflow.
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